ljacqu fca77b940f #1016 Deprecate MD5, SHA1, SHA512: no longer allowed for active use
- Deprecate unsalted hashes: if such a hash is configured, move it to the legacy hashes setting to still support the existing hashes in the database but hash all passwords from now on with our default, SHA256.
2017-10-19 21:30:19 +02:00

400 lines
14 KiB
Java

package fr.xephi.authme.security.crypts;
/**
* The Whirlpool hashing function.
* <p/>
* <p/>
* <b>References</b>
* <p/>
* <p/>
* The Whirlpool algorithm was developed by <a
* href="mailto:pbarreto@scopus.com.br">Paulo S. L. M. Barreto</a> and <a
* href="mailto:vincent.rijmen@cryptomathic.com">Vincent Rijmen</a>.
* <p/>
* See P.S.L.M. Barreto, V. Rijmen, ``The Whirlpool hashing function,'' First
* NESSIE workshop, 2000 (tweaked version, 2003),
* <https://www.cosic.esat.kuleuven
* .ac.be/nessie/workshop/submissions/whirlpool.zip>
*
* @author Paulo S.L.M. Barreto
* @author Vincent Rijmen.
* @version 3.0 (2003.03.12)
* <p/>
* ====================================================================
* =========
* <p/>
* Differences from version 2.1:
* <p/>
* - Suboptimal diffusion matrix replaced by cir(1, 1, 4, 1, 8, 5, 2,
* 9).
* <p/>
* ====================================================================
* =========
* <p/>
* Differences from version 2.0:
* <p/>
* - Generation of ISO/IEC 10118-3 test vectors. - Bug fix: nonzero
* carry was ignored when tallying the data length (this bug apparently
* only manifested itself when feeding data in pieces rather than in a
* single chunk at once).
* <p/>
* Differences from version 1.0:
* <p/>
* - Original S-box replaced by the tweaked, hardware-efficient
* version.
* <p/>
* ====================================================================
* =========
* <p/>
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
import fr.xephi.authme.security.crypts.description.Recommendation;
import fr.xephi.authme.security.crypts.description.Usage;
import java.util.Arrays;
@Deprecated
@Recommendation(Usage.DEPRECATED)
public class Whirlpool extends UnsaltedMethod {
/**
* The message digest size (in bits)
*/
public static final int DIGESTBITS = 512;
/**
* The message digest size (in bytes)
*/
public static final int DIGESTBYTES = DIGESTBITS >>> 3;
/**
* The number of rounds of the internal dedicated block cipher.
*/
protected static final int R = 10;
/**
* The substitution box.
*/
private static final String sbox = "\u1823\uc6E8\u87B8\u014F\u36A6\ud2F5\u796F\u9152" + "\u60Bc\u9B8E\uA30c\u7B35\u1dE0\ud7c2\u2E4B\uFE57" + "\u1577\u37E5\u9FF0\u4AdA\u58c9\u290A\uB1A0\u6B85" + "\uBd5d\u10F4\ucB3E\u0567\uE427\u418B\uA77d\u95d8" + "\uFBEE\u7c66\udd17\u479E\ucA2d\uBF07\uAd5A\u8333" + "\u6302\uAA71\uc819\u49d9\uF2E3\u5B88\u9A26\u32B0" + "\uE90F\ud580\uBEcd\u3448\uFF7A\u905F\u2068\u1AAE" + "\uB454\u9322\u64F1\u7312\u4008\uc3Ec\udBA1\u8d3d" + "\u9700\ucF2B\u7682\ud61B\uB5AF\u6A50\u45F3\u30EF" + "\u3F55\uA2EA\u65BA\u2Fc0\udE1c\uFd4d\u9275\u068A" + "\uB2E6\u0E1F\u62d4\uA896\uF9c5\u2559\u8472\u394c" + "\u5E78\u388c\ud1A5\uE261\uB321\u9c1E\u43c7\uFc04" + "\u5199\u6d0d\uFAdF\u7E24\u3BAB\ucE11\u8F4E\uB7EB" + "\u3c81\u94F7\uB913\u2cd3\uE76E\uc403\u5644\u7FA9" + "\u2ABB\uc153\udc0B\u9d6c\u3174\uF646\uAc89\u14E1" + "\u163A\u6909\u70B6\ud0Ed\ucc42\u98A4\u285c\uF886";
private static final long[][] C = new long[8][256];
private static final long[] rc = new long[R + 1];
static {
for (int x = 0; x < 256; x++) {
char c = sbox.charAt(x / 2);
long v1 = ((x & 1) == 0) ? c >>> 8 : c & 0xff;
long v2 = v1 << 1;
if (v2 >= 0x100L) {
v2 ^= 0x11dL;
}
long v4 = v2 << 1;
if (v4 >= 0x100L) {
v4 ^= 0x11dL;
}
long v5 = v4 ^ v1;
long v8 = v4 << 1;
if (v8 >= 0x100L) {
v8 ^= 0x11dL;
}
long v9 = v8 ^ v1;
/*
* build the circulant table C[0][x] = S[x].[1, 1, 4, 1, 8, 5, 2,
* 9]:
*/
C[0][x] = (v1 << 56) | (v1 << 48) | (v4 << 40) | (v1 << 32) | (v8 << 24) | (v5 << 16) | (v2 << 8) | (v9);
/*
* build the remaining circulant tables C[t][x] = C[0][x] rotr t
*/
for (int t = 1; t < 8; t++) {
C[t][x] = (C[t - 1][x] >>> 8) | ((C[t - 1][x] << 56));
}
}
/*
* build the round constants:
*/
rc[0] = 0L; /*
* not used (assigment kept only to properly initialize all
* variables)
*/
for (int r = 1; r <= R; r++) {
int i = 8 * (r - 1);
rc[r] = (C[0][i] & 0xff00000000000000L) ^ (C[1][i + 1] & 0x00ff000000000000L) ^ (C[2][i + 2] & 0x0000ff0000000000L) ^ (C[3][i + 3] & 0x000000ff00000000L) ^ (C[4][i + 4] & 0x00000000ff000000L) ^ (C[5][i + 5] & 0x0000000000ff0000L) ^ (C[6][i + 6] & 0x000000000000ff00L) ^ (C[7][i + 7] & 0x00000000000000ffL);
}
}
/**
* Global number of hashed bits (256-bit counter).
*/
protected final byte[] bitLength = new byte[32];
/**
* Buffer of data to hash.
*/
protected final byte[] buffer = new byte[64];
/**
* Current number of bits on the buffer.
*/
protected int bufferBits = 0;
/**
* Current (possibly incomplete) byte slot on the buffer.
*/
protected int bufferPos = 0;
/**
* The hashing state.
*/
protected final long[] hash = new long[8];
protected final long[] K = new long[8];
protected final long[] L = new long[8];
protected final long[] block = new long[8];
protected final long[] state = new long[8];
public Whirlpool() {
}
protected static String display(byte[] array) {
char[] val = new char[2 * array.length];
String hex = "0123456789ABCDEF";
for (int i = 0; i < array.length; i++) {
int b = array[i] & 0xff;
val[2 * i] = hex.charAt(b >>> 4);
val[2 * i + 1] = hex.charAt(b & 15);
}
return String.valueOf(val);
}
/**
* The core Whirlpool transform.
*/
protected void processBuffer() {
/*
* map the buffer to a block:
*/
for (int i = 0, j = 0; i < 8; i++, j += 8) {
block[i] = (((long) buffer[j]) << 56) ^ (((long) buffer[j + 1] & 0xffL) << 48) ^ (((long) buffer[j + 2] & 0xffL) << 40) ^ (((long) buffer[j + 3] & 0xffL) << 32) ^ (((long) buffer[j + 4] & 0xffL) << 24) ^ (((long) buffer[j + 5] & 0xffL) << 16) ^ (((long) buffer[j + 6] & 0xffL) << 8) ^ (((long) buffer[j + 7] & 0xffL));
}
/*
* compute and apply K^0 to the cipher state:
*/
for (int i = 0; i < 8; i++) {
state[i] = block[i] ^ (K[i] = hash[i]);
}
/*
* iterate over all rounds:
*/
for (int r = 1; r <= R; r++) {
/*
* compute K^r from K^{r-1}:
*/
for (int i = 0; i < 8; i++) {
L[i] = 0L;
for (int t = 0, s = 56; t < 8; t++, s -= 8) {
L[i] ^= C[t][(int) (K[(i - t) & 7] >>> s) & 0xff];
}
}
for (int i = 0; i < 8; i++) {
K[i] = L[i];
}
K[0] ^= rc[r];
/*
* apply the r-th round transformation:
*/
for (int i = 0; i < 8; i++) {
L[i] = K[i];
for (int t = 0, s = 56; t < 8; t++, s -= 8) {
L[i] ^= C[t][(int) (state[(i - t) & 7] >>> s) & 0xff];
}
}
for (int i = 0; i < 8; i++) {
state[i] = L[i];
}
}
/*
* apply the Miyaguchi-Preneel compression function:
*/
for (int i = 0; i < 8; i++) {
hash[i] ^= state[i] ^ block[i];
}
}
/**
* Initialize the hashing state.
*/
public void NESSIEinit() {
Arrays.fill(bitLength, (byte) 0);
bufferBits = bufferPos = 0;
buffer[0] = 0;
Arrays.fill(hash, 0L);
}
/**
* Delivers input data to the hashing algorithm.
*
* @param source plaintext data to hash.
* @param sourceBits how many bits of plaintext to process.
* <p>
* This method maintains the invariant: bufferBits &lt; 512
* </p>
*/
public void NESSIEadd(byte[] source, long sourceBits) {
/*
* sourcePos | +-------+-------+------- ||||||||||||||||||||| source
* +-------+-------+-------
* +-------+-------+-------+-------+-------+-------
* |||||||||||||||||||||| buffer
* +-------+-------+-------+-------+-------+------- | bufferPos
*/
int sourcePos = 0; // index of leftmost source byte containing data (1
// to 8 bits).
int sourceGap = (8 - ((int) sourceBits & 7)) & 7; // space on
// source[sourcePos].
int bufferRem = bufferBits & 7; // occupied bits on buffer[bufferPos].
int b;
// tally the length of the added data:
long value = sourceBits;
for (int i = 31, carry = 0; i >= 0; i--) {
carry += (bitLength[i] & 0xff) + ((int) value & 0xff);
bitLength[i] = (byte) carry;
carry >>>= 8;
value >>>= 8;
}
// process data in chunks of 8 bits:
while (sourceBits > 8) { // at least source[sourcePos] and
// source[sourcePos+1] contain data.
// take a byte from the source:
b = ((source[sourcePos] << sourceGap) & 0xff) | ((source[sourcePos + 1] & 0xff) >>> (8 - sourceGap));
if (b < 0 || b >= 256) {
throw new RuntimeException("LOGIC ERROR");
}
// process this byte:
buffer[bufferPos++] |= b >>> bufferRem;
bufferBits += 8 - bufferRem; // bufferBits = 8*bufferPos;
if (bufferBits == 512) {
// process data block:
processBuffer();
// reset buffer:
bufferBits = bufferPos = 0;
}
buffer[bufferPos] = (byte) ((b << (8 - bufferRem)) & 0xff);
bufferBits += bufferRem;
// proceed to remaining data:
sourceBits -= 8;
sourcePos++;
}
// now 0 <= sourceBits <= 8;
// furthermore, all data (if any is left) is in source[sourcePos].
if (sourceBits > 0) {
b = (source[sourcePos] << sourceGap) & 0xff; // bits are
// left-justified on b.
// process the remaining bits:
buffer[bufferPos] |= b >>> bufferRem;
} else {
b = 0;
}
if (bufferRem + sourceBits < 8) {
// all remaining data fits on buffer[bufferPos], and there still
// remains some space.
bufferBits += sourceBits;
} else {
// buffer[bufferPos] is full:
bufferPos++;
bufferBits += 8 - bufferRem; // bufferBits = 8*bufferPos;
sourceBits -= 8 - bufferRem;
// now 0 <= sourceBits < 8; furthermore, all data is in
// source[sourcePos].
if (bufferBits == 512) {
// process data block:
processBuffer();
// reset buffer:
bufferBits = bufferPos = 0;
}
buffer[bufferPos] = (byte) ((b << (8 - bufferRem)) & 0xff);
bufferBits += (int) sourceBits;
}
}
/**
* <p>
* Get the hash value from the hashing state.
* </p>
* <p>
* This method uses the invariant: bufferBits &lt; 512
* </p>
* @param digest byte[]
*/
public void NESSIEfinalize(byte[] digest) {
// append a '1'-bit:
buffer[bufferPos] |= 0x80 >>> (bufferBits & 7);
bufferPos++; // all remaining bits on the current byte are set to zero.
// pad with zero bits to complete 512N + 256 bits:
if (bufferPos > 32) {
while (bufferPos < 64) {
buffer[bufferPos++] = 0;
}
// process data block:
processBuffer();
// reset buffer:
bufferPos = 0;
}
while (bufferPos < 32) {
buffer[bufferPos++] = 0;
}
// append bit length of hashed data:
System.arraycopy(bitLength, 0, buffer, 32, 32);
// process data block:
processBuffer();
// return the completed message digest:
for (int i = 0, j = 0; i < 8; i++, j += 8) {
long h = hash[i];
digest[j] = (byte) (h >>> 56);
digest[j + 1] = (byte) (h >>> 48);
digest[j + 2] = (byte) (h >>> 40);
digest[j + 3] = (byte) (h >>> 32);
digest[j + 4] = (byte) (h >>> 24);
digest[j + 5] = (byte) (h >>> 16);
digest[j + 6] = (byte) (h >>> 8);
digest[j + 7] = (byte) (h);
}
}
/**
* Delivers string input data to the hashing algorithm.
*
* @param source plaintext data to hash (ASCII text string).
* This method maintains the invariant: bufferBits &lt; 512
*/
public void NESSIEadd(String source) {
if (source.length() > 0) {
byte[] data = new byte[source.length()];
for (int i = 0; i < source.length(); i++) {
data[i] = (byte) source.charAt(i);
}
NESSIEadd(data, 8 * data.length);
}
}
@Override
public String computeHash(String password) {
byte[] digest = new byte[DIGESTBYTES];
NESSIEinit();
NESSIEadd(password);
NESSIEfinalize(digest);
return display(digest);
}
}